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Diffuse Interface Model for two-phase flows

We consider

pOev + pv - Vv — divS(c,Dv) + Vp = —ddiv(Ve ® V) + f,

(0.1)

divv =0, (0.2)
Orc+v-Ve=mAp, (0.3)
p=206"1p(c) —dAc.  (0.4)

Here v is the mean velocity, Dv = (Vv + Vv'), p is the
pressure, and c is an order parameter related to the concentration
of the fluids (e.g. the concentration difference or the concentration
of one component). For simplicity we assume that 6 = p = 1.

)
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Diffuse Interface Model for two-phase flows

We close the system by adding the boundary and initial conditions

Vign =0 on 9Q x (0, 00), (0.5)
Oncloa = Onpiloa =0 on 9Q x (0, 00), (0.6)
(v, ¢)|t=0 = (vo, ) in Q. (0.7)
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Basic Assumption

Let Q ¢ RY, d = 2,3, be a bounded domain with C?-boundary
and let ® € C([a, b]) N C?((a, b)) be such that ¢ = &' satisfies

im 6(s) = —o0,  lm(s) =00, #(s)> —a

s—a

for some a € R. Let m > 0 and let S: [a, b] x RIX9 — RI*9 pe
such that

S(e, M)| < C(lsym(M)[|9F +1)

S(c1, M) = S(e2, M) < Clex = cal(|sym(M)| +1)
S(c, M): M > k|sym(M)|9 - C

for all M € R9%9, ¢, c1, ¢ € [a, b], and some C, Cy,k > 0,

q € (2,00).Moreover, we assume that S(c, -): Rdxd — RIX is
strictly monotone for every ¢ € [a, b].
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(S(C Ml) — S(C, Mg)) : (Ml — M2) >0
for any My, My € RIX9(My # My).

sym

For the following we denote

2
Em,-x(c):/ Vel dx+/d>(c) dx.
Q 2 Q

Qt = Qx (0, t)
Q =0 x (0, 00).

(©)".



Cahn-Hilliard equation

We recall some results on the Cahn-Hilliard equation with

convection term:

dic+v-Ve=mApu
p=9¢(c)— Ac
Oncloq = Onpt|log =0

Clt=0 = <o

for given ¢y with Epix(co) < oo and

in Q x (0,00), (0.8)
in Q x (0,00), (0.9)
on 99 x (0,00),  (0.10)
in Q (0.11)

v € L%(0,00; L2(Q)) N L2(0, 00; H}(2)). Here ¢ = ¢’ and @ is

as in Basic Assumption.

6
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Theorem 1 (Abels and Wilke ('06)) Let
v e L2(0 0o; HE(R)9) N L°(0, 00; L2(R)). Then for every
€ H (Q) with Emix(co) < oo there is a unique solution

ce BC([O 00); (0)( )) of (0.8)-(0.11) with
drc € 12(0, o0; H@(Q)) and p € L2 _([0,00); HY(Q)). This
solution satisfies

Epmixc(c(t) /Vu\z x,7) = Emix(co) — /v~,chd(x,7')
t (0.12)

uloc

for all t € [0,00) and

2 2
€l ey + 19e€l g ity + IVl

< C (Emix(CO) + ||V||i2(Q)) (013)
HCH L ([0,00);W2) + llp(c )”L2| ([0,00);L")
< c, (Emix(co) + IvI122(q)) (0.14)

where r =6 ifd =3 and 1 < r < oo is arbitrary if d = 2.

~
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Moreover, for every R > 0 the solution
¢ € Y i= L2 ([0,50); W2(Q)) N HA([0, 00): High(€2))
depends continuously on
(co V)EX=H(Q)x L3, ([0, 50); L2()With Epmix(c) HV[| 20 mertiy < R

with respect to the weak topology on Y and the strong topology
on X.



Approximate system

v + div(®.(|v])v ® v) — divS(c,Dv) + Vp
= -V_(div(Vc® Vc)) inQx(0,T),
(0.15)
divv =0, in Q2 (0, T),
(0.16)
Orc+ (Veov) - Ve = mAyp, in Qx (0, T),
(0.17)
= ¢(c) — Ac. in Qx(0,T)
(0.18)

together with (0.5)-(0.6), where V.w = P, (1. * w)|q,

Ye(x) = e7%p(x/e), € > 0, is a usual smoothing kernel such that
P(—x) = P(x) for all x € R", w is extended by 0 outside of €,
and P, is the Helmholtz projection.
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Existence of weak solutions of the approximate system

Theorem 2 (Abels-Diening-T.) For every 0 < T < oo,
vo € L2(Q), co € HY(Q) such that co(x) € [a, b] almost
everywhere there is a weak solution (v, c, i) of
(0.15)-(0.18),(0.5)-(0.7) such that
v e Wy([0, T]: V,(Q)) N LP(0, T; V,y(Q)),
c € BC([0, T]; H}(Q)) N H*(0, T; H(;))l(fz)) N L2(0, T; W3(Q)),
e 120, T; HY(Q))

where r =6 ifd =3 and 1 < r < oo is arbitrary if d = 2.
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Moreover, for every 0 <t < T
1 t
S[v() 1220 + Emix(c(t)) + S(c,Dv) : Dvdxdr
2 @) 0 JQ

t
1
b [ [ miTu dxdr = 3 volfiqgy + Enis(co)
0 Ja
—F (0.19)
and
el ;w2 ) + lé(e)ll 2o, mer()) < C(T, Eo) (0.20)

for some C(T, Ep) > 0 depending continuously on T, Ey.
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Definition of Weak Solutions Let d =2 or d = 3. Let

Q c RY be a bounded open set with C2-boundary and

0 < T < oo. Assume ¢ and S satisfies the Basic Assumption. Let
v € L2(Q), co € HY(Q) s.t. co(x) € [a,b] a.e. x € Q. Then a
triplet (v, ¢, 1) such that

v € Cu([0, T1; L5()) N W, ([0, TT; Vp(Q)') N LP(0, T; Vi(Q)),
c € BC([o, T]; H}(Q)) n HY(0, T; H(B;(Q)) N L%(0, T; W3(Q)),
pe L2(0, T; HY(Q))

where r =6 if d =3 and 1 < r < oo is arbitrary if d = 2, which
satisfies the following is called a weak solution of (0.1) - (0.6).
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For any ¢ € (C*(Q71))? with divep = 0 and
supp(p) CC 2 x [0, T),

—/ V- Orp d(x7t)—/ vv:De d(x,t)+ | S(c,Dv): Dy d(x,t)
Qr Qr Qr

= Ve®@Ve: Dy d(x,t)+ / vo - p(0)dx (0.21)
Qr Q

holds and for ¢ € C(%‘;([O, T) x Q),

_/QT corp dx C/f—/QCol/J(O)-F/QT(V‘VC)iﬁ dx dt

= — V-V d(X, t)
Qr

H = ¢(C) - AC7
8nC|aQ =0

holds.
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Main Theorem (Abels-Diening-T.) Letd =2 ord = 3. Let
Q c RY be a bounded open set with C2-boundary and

0 < T < oo. Assume ¢ and S satisfies the Basic Assumption. Let
v € L2(Q), co € HY(Q) s.t. co(x) € [a, b] a.e. x € Q. Then there
exists a weak solution of (0.1) - (0.6).

Sketch of proof

There is a unique weak solution of the approximate system (0.15) -
(0.4) together with boundary conditions. We pass that solution to
the limit when € tends to zero, using an adaptation of the Lipshitz
truncation method, which was used for the construction of weak
solutions of the power-law fluid equations with low powers in
Diening-Ruzicka-Wolf ('10). Then we get a weak solution of (0.1)
- (0.6).
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Power-Law Fluid equations

pOev + pv - Vv — divS(Dv) + Vp = f, (0.22)
divv =0, (0.23)

where §: RI*d _y RI*d gatisfies

S(M)| < C(Isym(M)|"! +1)
S(M): M > klsym(M)|9 — G

for all M € R9%9, and some C, C;,x >0, g € [1,00).
S is strictly monotone.
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We review the known results about the weak solution of (0.22) -
(0.23) (with boundary condition).

» Ladyzhenskaya ('67, '68) and Lions ('69) proved the existence
of a unique weak solution when g > %.

» In periodic boundary condition case, Necas, Malek and
Ruzicka ('93) proved the existence of a weak solution when
3d_
9> g2
»  In Dirichlet boundary condition case, Necas, Malek and
Ruzicka ('01) proved the existence of a weak solution when

2<g<3whend=3.

» In Dirichlet boundary condtion case, Wolf ('07) proved the
existence of a weak solution when q > 2(;:21), using L*°-test
functions and the local pressure method.
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> In Dirichlet boundary condition case, Diening, Ruzicka and
Wolf ("10) proved the existence of a weak solution when
q> dzT‘.jz: using Lipschitz truncation method and the local
pressure method.

Remark. When g = 2 (i.e. Navier-Stokes equations case), the
existence of weak solutions can be proven in all dimensions more
easily.
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Results on Navier-Stokes-Cahn-Hilliard equations

> Abels('09)

Results on Power Law Fluid equations coupled with
Cahn-Hilliard equations

» Kim-Consiglieri-Rodorigues('06)
» Grasselli-Prazak('11)
Our main result treats the case with low g which was not treated

in the literatures, which corresponds to the result in
Diening-Ruzicka-Wolf ('10).
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Lipshitz truncation lemma

Lemma Let
u e L0, T; L2(G)) N LI(0, T; WH9(G)) (1 < g < o0) and
He L7(0, T; L7(G)) (1 < 0 < o0) be such that

—/ u-dwp d(x,t) = / H: Ve d(x,7) (0.24)
Gx(0,T) Gx(0,T)

for all ¢ € C§°(G x (0, T)). We define
On = {(x,7) € R [ M (IVul)(x, £) + a M*(H])(x, £) > A}, A >0
Uy = {(x, t) € R | M (Jul)(x, £) > 1} .

Let A > 0 and the open set E C Rt with L4,1(E) < oo be such
that

(Gx(0,T))N(OaUU) CECGx(0,T). (0.25)
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Lipshitz truncation lemma

Let K C G x (0, T) be a compact set. Then we have:
(i) The Lipschitz truncation T¢'u belongs to Cg;l(K ) with a norm
depending on n, K, A, , [|u[ .1 (g), Hu”Ll(Rx(o,T))' where

K cc K cC G. In particular, we have Tgu, VTEu € L(K).
(i) The Lipschitz truncation Tg'u satisfies the estimates

IVTEullie(k) < ¢ (A a 6.5 Ivlle ) (0.26)
ITEVIeky < € (L+a™ 8,52 ull e ) (0.27)

where 0ok = do(K,0(G x (0, T))) and where the constants c
depend only on n. Here a > 0 and

da ((x,5), (v, £)) == max { x = y|, Ja"}(s = 1) 3 }.
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Lipschitz truncation lemma (continued)

(iii) The function (0:T2v) - (T2u — u) belongs to L*(K N E) and
we have

1@ TEV)-(TEu=0)|| 1 gy < €@ Lasa(E) (Aot 5,5 ull ey ),

(0.28)
where the constant ¢ depends only on n.
(iv) For all ¢ € C3°(G x (0, T)) holds the identity
T
/0 (Deu(t), (TEu(1)) (1)) ot (0.29)

- ;/ (|7;§m|2 ~2u- 77:9‘u)8t(d(x, ) (0.30)
Gx(0,T)

T /E (0:TEu) - (TEu — u)Cd(x, 1),

where (-,-) denotes the usual duality pairing with respect to G.
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The existence of weak solutions of the approximate system follows
from Theorem 2. Using the a priori estimates given by (0.19) and
(0.20), we can conclude for a suitable subsequence £; —;_,+, 0 that

Dv., — Dv weakly in L9(Q7),
v., — v weakly in qu%?(QT),
S(c.;,Dve;) — S weakly in L7(Q7),
Vo, ®ve, ., (vo,) — H weakly in L9 (Q7). (0.31)

Moreover, because of (0.20), (0.17), and the Lemma of
Aubin-Lions, it is easy to prove that

V., —ise Ve o in L2(0, T; CHQ))

since W2(Q) < C(Q) compactly. Interpolation with the
boundedness of c. € L=(0, T; HY(Q)) yields

Ve, —iseo Ve o in LYQ7). (0.32)



Let K. € L?(Q7)9*9 be such that
/ K. : Do d(x,7) :/ (Ve @ Ve:) : DV () d(x,7) (0.33)
Qr QT
- _/ V. (div(Ve. ® Ve.) - o d(x,7)
QT

for all ¢ € L2(0, T; H3(Q)9) and that K. € L2(Q7)9 depends
continuously on V. div(Ve. ® Ve.) € L2(0, T; Hy *(Q)9). Then

K., — K:=Vc® Vc strongly in L2(Q7)*?,

due to (0.32).
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We consider only the case g < 2 for simplicity. Next, let G CC Q
be a fixed but arbitrary open bounded set. Clearly we may assume
there exists an open bounded set G’ CC Q with G cC G’ and
G’ € C2. Similarly as in Diening-Ruzicka-Wolf, we have for some
€i —Fissoo 0,

Ve, =V strongly in L27°(0, T; L?7°(G’))

(0.34)

and v, @ v, P (Jve]) 2 vV strongly in L7°(0, T; L°°(G")),
(0.35)

d+2

where 09 > 1 and g < 20¢ < g25=. We also have for i — oo,

v., > v strongly in L7(0, T; [%(G")), forall 1 <r < oo
(0.36)

by interpolation of (0.34) with the boundedness of
(ve) € L°°(0, T; L2(Q)).
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Taking the limit of the weak form of the approximate system along
the subsequence ¢;, we have the following.

—/ v- 0,0 d(x,t) +/ (S—v@v):Dypd(x,t) (0.37)
Qr QT
—/ K: D¢ d(x,t)+/v0-<p(0) dx.
QT Q

By subtracting the above equation from the weak form of the
approximate equations, we have the following.

_/QT(\,E V) - B d(x, t)—{—/QT (S(ca,Dua) —§) : Do d(x, t)
- /Q (v @ ve®e(v) — v 0 ) : Dep d(x, t)

+ / (K: — K) : D d(x, t). (0.38)
QT
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Using a local pressure decomposition method as in
Diening-Ruzicka-Wolf, one gets unique functions:

pre € L9 ((0 T); Lq’(G’)) , (0.39)
pac € L7 ((0, T); L7(G"))

((
pse € 12((0, T): 2(6)) and
Phe € Cw ([ T]; W12 G))

with Ap. =0, and p,.(0) = 0 and
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T T _
—/ (ve—v)~8tcpdxdt+/ / <S(C5,DV5)—S) : Ve dx dt
o Ja 0 ’

T
:/ / (Ve @ ve®(|ve|) —v® V) : Vpdxdt
0o JG

/

-
/ /(KE—K):VLpdxdt
0 G

T
+ / /G {(pl,s + p2e + P3,z—:) dive + vph7m : 81‘80} dx dt
0 /
(0.40)

_l’_

for all ¢ € (C§°(G' x (0, T))“.
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||P1,s||Lq/(G/X(o,T)) < CIS(ce, Dve) — §‘|Lq/(G’><(O,T))7 (0.41)
1P2.cllL70 (67 (0,7)) < Cllve @ vePe(|Ve]) — v @ V|[Lo0(67x(0,T))

(0.42)
1P3.cll2(67x(0,7)) < ClIKe — K][12(g,) and (0.43)
Pne(t)llwrzery < Cllve(t) —v(t)ll 26y, t€(0,T). (0.44)
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Since pp ¢ is harmonic in G’, as in Diening-Ruzicka-Wolf, it follows
that for all t € (0, T) and all 1 < r < o0,

th,a(t)”W2v’(G) < C”ph,a(t)||L2(G/)
< Cllve(t) = (1)l 26 (0.45)

where the constant depends on d, G’ and G.
If we set ue := (Ve — v+ Vps)xex(o,T) We have

u. — 0 strongly in L2°(G x (0, T)) & — 0.
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We can also see that (0.40) can be rewritten for any
@ € (C°(G x (0, T))? as follows.

—/OT/Gug-atcp d(x, t)—l—/OT/G (S(CE,DVE)—g) : Dy d(x, t)
=/()T/G(vg®vgwa(lval)—v®v) : Ve dx dt

+ /QT(K5 —K) : Dpd(x,t)

-
s [ [ et pre+ mydive dix) (0.46)
0 G
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From this, we get O;u. € L°°(0, T; W=19°(G))). Therefore, if we

put

Hi. =S —S(c,Du.) + prcl,
Hoo =ve @ vV (|ve|) v v+ pocl,
H3. =K. — K+ pscl,

and H. =H;.+H>. +Hs,,

then (0.46) can be written both as

- / u. - Orp d(x,t) = / H. : Vo d(x, t)
Gx(0,T) Gx(0,T)
for all ¢ € (C§°(G x (0, T)))? and as
T
/ (Orug, ) dt :/ H. : Vi d(x, t)
0 Gx(0,T)

for all p € (L"é (O, T: WOI’U(I’(G)>>d.

(0.47)

(0.48)
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We define the set E . and oy where k € N appropriately by using
uc and Hy, Hy., H3 .. Then we can use Lipschitz truncation
lemma by settingu =u.,, H=H., E = E,. and o = ay.
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We choose k € N appropriately for each € and setting it to be e.
Letting kK — oo in the equality which is obtained by Lipschitz
truncation lemma we get

lim / S(c,Dv,,) : Dv, (d(x,t) = / S : Dv(d(x, t).
k=00 JGx(0,T) Gx(0,T)
(0.49)
With the help of the local Minty trick we obtain
S¢=S(c,Dv)¢ ae. in G x(0,T). (0.50)

Hence

S =S(c,Dv) ae. in Gx(0,T).
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