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Diffuse Interface Model for two-phase flows

We consider

ρ∂tv + ρv · ∇v − divS(c ,Dv) +∇p = −δ div(∇c ⊗∇c) + f ,
(0.1)

div v = 0, (0.2)

∂tc + v · ∇c = m∆µ, (0.3)

µ = δ−1φ(c)− δ∆c. (0.4)

Here v is the mean velocity, Dv = 1
2(∇v +∇vT ), p is the

pressure, and c is an order parameter related to the concentration
of the fluids (e.g. the concentration difference or the concentration
of one component). For simplicity we assume that δ = ρ = 1.
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Diffuse Interface Model for two-phase flows

We close the system by adding the boundary and initial conditions

v|∂Ω = 0 on ∂Ω× (0,∞), (0.5)

∂nc|∂Ω = ∂nµ|∂Ω = 0 on ∂Ω× (0,∞), (0.6)

(v, c)|t=0 = (v0, c0) in Ω. (0.7)
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Basic Assumption

Let Ω ⊂ Rd , d = 2, 3, be a bounded domain with C 2-boundary
and let Φ ∈ C ([a, b]) ∩ C 2((a, b)) be such that φ = Φ′ satisfies

lim
s→a

φ(s) = −∞, lim
s→b

φ(s) = ∞, φ′(s) ≥ −α

for some α ∈ R. Let m > 0 and let S : [a, b]× Rd×d → Rd×d be
such that

|S(c,M)| ≤ C (| sym(M)|q−1 + 1)

|S(c1,M)− S(c2,M)| ≤ C |c1 − c2|(| sym(M)|q−1 + 1)

S(c,M) : M ≥ κ| sym(M)|q − C1

for all M ∈ Rd×d , c , c1, c2 ∈ [a, b], and some C ,C1, κ > 0,
q ∈ (65 ,∞).Moreover, we assume that S(c , ·) : Rd×d

sym → Rd×d
sym is

strictly monotone for every c ∈ [a, b].
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(S(c ,M1)− S(c ,M2)) : (M1 −M2) > 0

for any M1,M2 ∈ Rd×d
sym (M1 6= M2).

For the following we denote

Emix(c) =

∫
Ω

|∇c |2

2
dx +

∫
Ω
Φ(c) dx .

Let Vp(Ω) = W 1
p,0(Ω)

d ∩ Lpσ(Ω),

L2(0)(Ω) = {f ∈ L2(Ω) :
∫
Ω f (x) dx = 0},

H1
(0)(Ω) = H1(Ω) ∩ L2(0)(Ω), and H−1

(0) (Ω) := H1
(0)(Ω)

′.

Qt := Ω× (0, t).

Q :=Ω× (0,∞).
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Cahn-Hilliard equation

We recall some results on the Cahn-Hilliard equation with
convection term:

∂tc + v · ∇c = m∆µ in Ω× (0,∞), (0.8)

µ = φ(c)−∆c in Ω× (0,∞), (0.9)

∂nc |∂Ω = ∂nµ|∂Ω = 0 on ∂Ω× (0,∞), (0.10)

c |t=0 = c0 in Ω (0.11)

for given c0 with Emix(c0) <∞ and
v ∈ L∞(0,∞; L2σ(Ω)) ∩ L2(0,∞;H1

0 (Ω)
d). Here φ = Φ′ and Φ is

as in Basic Assumption.
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Theorem 1 (Abels and Wilke (’06)) Let
v ∈ L2(0,∞;H1

0 (Ω)
d) ∩ L∞(0,∞; L2σ(Ω)). Then for every

c0 ∈ H1
(0)(Ω) with Emix(c0) <∞ there is a unique solution

c ∈ BC ([0,∞);H1
(0)(Ω)) of (0.8)-(0.11) with

∂tc ∈ L2(0,∞;H−1
(0) (Ω)) and µ ∈ L2uloc([0,∞);H1(Ω)). This

solution satisfies

Emix(c(t)) +

∫
Qt

|∇µ|2 d(x , τ) = Emix(c0)−
∫
Qt

v · µ∇c d(x , τ)

(0.12)
for all t ∈ [0,∞) and

‖c‖2L∞(0,∞;H1) + ‖∂tc‖2L2(0,∞;H−1
(0)

)
+ ‖∇µ‖2L2(Q)

≤ C
(
Emix(c0) + ‖v‖2L2(Q)

)
(0.13)

‖c‖2L2uloc([0,∞);W 2
r )

+ ‖φ(c)‖2L2uloc([0,∞);Lr )

≤ Cr

(
Emix(c0) + ‖v‖2L2(Q)

)
(0.14)

where r = 6 if d = 3 and 1 < r <∞ is arbitrary if d = 2.
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Moreover, for every R > 0 the solution

c ∈ Y := L2loc([0,∞);W 2
r (Ω)) ∩ H1

loc([0,∞);H−1
(0) (Ω))

depends continuously on

(c0, v)∈X:=H1(Ω)×L2loc([0,∞); L2σ(Ω))with Emix(c0)+‖v‖L2(0,∞;H1) ≤ R

with respect to the weak topology on Y and the strong topology
on X .
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Approximate system

∂tv + div(Φε(|v|)v ⊗ v)− divS(c ,Dv) +∇p

= −Ψε(div(∇c ⊗∇c)) in Ω× (0,T ),
(0.15)

div v = 0, in Ω× (0,T ),
(0.16)

∂tc + (Ψεv) · ∇c = m∆µ, in Ω× (0,T ),
(0.17)

µ = φ(c)−∆c . in Ω× (0,T )
(0.18)

together with (0.5)-(0.6), where Ψεw = Pσ(ψε ∗ w)|Ω,
ψε(x) = ε−dψ(x/ε), ε > 0, is a usual smoothing kernel such that
ψ(−x) = ψ(x) for all x ∈ Rn, w is extended by 0 outside of Ω,
and Pσ is the Helmholtz projection.
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Existence of weak solutions of the approximate system

Theorem 2 (Abels-Diening-T.) For every 0 < T <∞,
v0 ∈ L2σ(Ω), c0 ∈ H1(Ω) such that c0(x) ∈ [a, b] almost
everywhere there is a weak solution (v, c , µ) of
(0.15)-(0.18),(0.5)-(0.7) such that

v ∈ W 1
p′([0,T ];Vp(Ω)

′) ∩ Lp(0,T ;Vp(Ω)),

c ∈ BC ([0,T ];H1(Ω)) ∩ H1(0,T ;H−1
(0) (Ω)) ∩ L2(0,T ;W 2

r (Ω)),

µ ∈ L2(0,T ;H1(Ω))

where r = 6 if d = 3 and 1 ≤ r <∞ is arbitrary if d = 2.
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Moreover, for every 0 ≤ t ≤ T

1

2
‖v(t)‖2L2(Ω) + Emix(c(t)) +

∫ t

0

∫
Ω
S(c ,Dv) : Dv dx dτ

+

∫ t

0

∫
Ω
m|∇µ|2 dx dτ =

1

2
‖v0‖2L2(Ω) + Emix(c0)

=: E0 (0.19)

and

‖c‖L2(0,T ;W 2
r (Ω)) + ‖φ(c)‖L2(0,T ;Lr (Ω)) ≤ C (T ,E0) (0.20)

for some C (T ,E0) > 0 depending continuously on T ,E0.

11 / 33



Definition of Weak Solutions Let d = 2 or d = 3. Let
Ω ⊂ Rd be a bounded open set with C 2-boundary and
0 < T <∞. Assume φ and S satisfies the Basic Assumption. Let
v0 ∈ L2σ(Ω), c0 ∈ H1(Ω) s.t. c0(x) ∈ [a, b] a.e. x ∈ Ω. Then a
triplet (v, c , µ) such that

v ∈ Cw ([0,T ]; L2σ(Ω)) ∩W 1
p′([0,T ];Vp(Ω)

′) ∩ Lp(0,T ;Vp(Ω)),

c ∈ BC ([0,T ];H1(Ω)) ∩ H1(0,T ;H−1
(0) (Ω)) ∩ L2(0,T ;W 2

r (Ω)),

µ ∈ L2(0,T ;H1(Ω))

where r = 6 if d = 3 and 1 ≤ r <∞ is arbitrary if d = 2, which
satisfies the following is called a weak solution of (0.1) - (0.6).
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For any ϕ ∈ (C∞(QT ))
d with divϕ = 0 and

supp(ϕ) ⊂⊂ Ω× [0,T ),

−
∫
QT

v · ∂tϕ d(x , t)−
∫
QT

v ⊗ v : Dϕ d(x , t) +

∫
QT

S(c ,Dv) : Dϕ d(x , t)

=

∫
QT

∇c ⊗∇c : Dϕ d(x , t) +

∫
Ω
v0 ·ϕ(0)dx (0.21)

holds and for ψ ∈ C∞
(0)([0,T )× Ω),

−
∫
QT

c∂tψ dx dt −
∫
Ω
c0ψ(0) +

∫
QT

(v · ∇c)ψ dx dt

= −
∫
QT

∇µ · ∇ψ d(x , t)

µ = φ(c)−∆c ,

∂nc |∂Ω = 0

holds.
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Main Theorem (Abels-Diening-T.) Let d = 2 or d = 3. Let
Ω ⊂ Rd be a bounded open set with C 2-boundary and
0 < T <∞. Assume φ and S satisfies the Basic Assumption. Let
v0 ∈ L2σ(Ω), c0 ∈ H1(Ω) s.t. c0(x) ∈ [a, b] a.e. x ∈ Ω. Then there
exists a weak solution of (0.1) - (0.6).

Sketch of proof
There is a unique weak solution of the approximate system (0.15) -
(0.4) together with boundary conditions. We pass that solution to
the limit when ε tends to zero, using an adaptation of the Lipshitz
truncation method, which was used for the construction of weak
solutions of the power-law fluid equations with low powers in
Diening-Ruzicka-Wolf (’10). Then we get a weak solution of (0.1)
- (0.6).
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Power-Law Fluid equations

ρ∂tv + ρv · ∇v − divS(Dv) +∇p = f , (0.22)

div v = 0, (0.23)

where S : Rd×d → Rd×d satisfies

|S(M)| ≤ C (| sym(M)|q−1 + 1)

S(M) : M ≥ κ| sym(M)|q − C1

for all M ∈ Rd×d , and some C ,C1, κ > 0, q ∈ [1,∞).
S is strictly monotone.
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We review the known results about the weak solution of (0.22) -
(0.23) (with boundary condition).

I Ladyzhenskaya (’67, ’68) and Lions (’69) proved the existence
of a unique weak solution when q ≥ d+2

2 .

I In periodic boundary condition case, Necas, Malek and
Ruzicka (’93) proved the existence of a weak solution when
q > 3d

d+2 .

I 　 In Dirichlet boundary condition case, Necas, Malek and
Ruzicka (’01) proved the existence of a weak solution when
2 ≤ q < 3 when d = 3.

I In Dirichlet boundary condtion case, Wolf (’07) proved the

existence of a weak solution when q > 2(d+1)
d+2 , using L∞-test

functions and the local pressure method.
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I In Dirichlet boundary condition case, Diening, Ruzicka and
Wolf (’10) proved the existence of a weak solution when
q > 2d

d+2 , using Lipschitz truncation method and the local
pressure method.

Remark. When q = 2 (i.e. Navier-Stokes equations case), the
existence of weak solutions can be proven in all dimensions more
easily.
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Results on Navier-Stokes-Cahn-Hilliard equations

I Abels(’09)

Results on Power Law Fluid equations coupled with
Cahn-Hilliard equations

I Kim-Consiglieri-Rodorigues(’06)

I Grasselli-Prazak(’11)

Our main result treats the case with low q which was not treated
in the literatures, which corresponds to the result in
Diening-Ruzicka-Wolf (’10).
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Lipshitz truncation lemma
Lemma Let
u ∈ L∞(0,T ; L2(G )) ∩ Lq(0,T ;W 1,q(G )) (1 < q <∞) and
H ∈ Lσ(0,T ; Lσ(G )) (1 < σ <∞) be such that

−
∫
G×(0,T )

u · ∂tϕ d(x , t) =

∫
G×(0,T )

H : ∇ϕ d(x , τ) (0.24)

for all ϕ ∈ C∞
0 (G × (0,T )). We define

OΛ :=
{
(x , τ) ∈ Rd+1

∣∣M∗(|∇u|)(x , t) + αM∗(|H|)(x , t) > Λ
}
,Λ > 0 ,

U1 :=
{
(x , t) ∈ Rd+1

∣∣M∗(|u|)(x , t) > 1
}
.

Let Λ > 0 and the open set E ⊂ Rd+1 with Ld+1(E ) <∞ be such
that (

G × (0,T )
)
∩
(
OΛ ∪ U1

)
⊂ E ⊂ G × (0,T ) . (0.25)
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Lipshitz truncation lemma

Let K ⊂ G × (0,T ) be a compact set. Then we have:
(i) The Lipschitz truncation T α

E u belongs to C 0,1
dα

(K ) with a norm
depending on n,K ,Λ, α, ‖u‖L1(E), ‖u‖L1(K̃×(0,T )), where

K ⊂⊂ K̃ ⊂⊂ G. In particular, we have T α
E u,∇T α

E u ∈ L∞(K ).
(ii) The Lipschitz truncation T α

E u satisfies the estimates

‖∇T α
E u‖L∞(K) ≤ c

(
Λ + α−1 δ−d−3

α,K ‖v‖L1(E)

)
, (0.26)

‖T α
E v‖L∞(K) ≤ c

(
1 + α−1 δ−d−2

α,K ‖u‖L1(E)

)
, (0.27)

where δα,K := dα(K , ∂(G × (0,T ))) and where the constants c
depend only on n. Here α > 0 and

dα ((x , s), (y , t)) := max
{
|x − y |, |α−1(s − t)|

1
2

}
.
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Lipschitz truncation lemma (continued)

(iii) The function (∂tT α
E v) · (T α

E u− u) belongs to L1(K ∩ E ) and
we have∥∥(∂tT α

E v)·(T α
E u−u)

∥∥
L1(K∩E)

≤ c α−1Ld+1(E )
(
Λ+α−1 δ−d−3

α,K ‖u‖L1(E)

)2
,

(0.28)
where the constant c depends only on n.
(iv) For all ζ ∈ C∞

0 (G × (0,T )) holds the identity∫ T

0

〈
∂tu(t), (T α

E u(t)) ζ(t)
〉
dt (0.29)

=
1

2

∫
G×(0,T )

(
|T α

E u|2 − 2u · T α
E u

)
∂tζd(x , t) (0.30)

+

∫
E
(∂tT α

E u) · (T α
E u− u)ζd(x , t),

where 〈·, ·〉 denotes the usual duality pairing with respect to G.
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The existence of weak solutions of the approximate system follows
from Theorem 2. Using the a priori estimates given by (0.19) and
(0.20), we can conclude for a suitable subsequence εi →i→∞ 0 that

Dvεi → Dv weakly in Lq(QT ),

vεi → v weakly in Lq
d+2
d (QT ),

S (cεi ,Dvεi ) → S̃ weakly in Lq
′
(QT ),

vεi ⊗ vεiΦεi (vεi ) → H̃ weakly in Lq
d+2
2d (QT ). (0.31)

Moreover, because of (0.20), (0.17), and the Lemma of
Aubin-Lions, it is easy to prove that

∇cεi →i→∞ ∇c in L2(0,T ;C 1(Ω))

since W 2
6 (Ω) ↪→ C 1(Ω) compactly. Interpolation with the

boundedness of cε ∈ L∞(0,T ;H1(Ω)) yields

∇cεi →i→∞ ∇c in L4(QT ). (0.32)
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Let Kε ∈ L2(QT )
d×d be such that∫

QT

Kε : Dϕ d(x , τ) =

∫
QT

(∇cε ⊗∇cε) : DΨε(ϕ) d(x , τ) (0.33)

= −
∫
QT

Ψε (div(∇cε ⊗∇cε)) ·ϕ d(x , τ)

for all ϕ ∈ L2(0,T ;H1
0 (Ω)

d) and that Kε ∈ L2(QT )
d depends

continuously on Ψε div(∇cε ⊗∇cε) ∈ L2(0,T ;H−1
0 (Ω)d). Then

Kεi → K := ∇c ⊗∇c strongly in L2 (QT )
d×d ,

due to (0.32).
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We consider only the case q < 2 for simplicity. Next, let G ⊂⊂ Ω
be a fixed but arbitrary open bounded set. Clearly we may assume
there exists an open bounded set G ′ ⊂⊂ Ω with G ⊂⊂ G ′ and
∂G ′ ∈ C 2. Similarly as in Diening-Ruzicka-Wolf, we have for some
εi →i→∞ 0,

vεi → v strongly in L2σ0(0,T ; L2σ0(G ′))
(0.34)

and vεi ⊗ vεiΦεi (|vε|) → v ⊗ v strongly in Lσ0(0,T ; Lσ0(G ′)),
(0.35)

where σ0 > 1 and q ≤ 2σ0 < q d+2
d . We also have for i → ∞,

vεi → v strongly in Lr (0,T ; L2(G ′)), for all 1 ≤ r <∞
(0.36)

by interpolation of (0.34) with the boundedness of
(vε) ∈ L∞(0,T ; L2(Ω)).
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Taking the limit of the weak form of the approximate system along
the subsequence εi , we have the following.

−
∫
QT

v · ∂τϕ d(x , t) +

∫
QT

(S̃− v ⊗ v) : Dϕ d(x , t) (0.37)

=

∫
QT

K : Dϕ d(x , t) +

∫
Ω
v0 ·ϕ(0) dx .

By subtracting the above equation from the weak form of the
approximate equations, we have the following.

−
∫
QT

(vε − v) · ∂tϕ d(x , t) +

∫
QT

(
S(cε,Duε)− S̃

)
: Dϕ d(x , t)

=

∫
QT

(vε ⊗ vεΦε(vε)− v ⊗ v) : Dϕ d(x , t)

+

∫
QT

(Kε −K) : Dϕ d(x , t). (0.38)
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Using a local pressure decomposition method as in
Diening-Ruzicka-Wolf, one gets unique functions:

p1,ε ∈ Lq
′
(
(0,T ); Lq

′
(G ′)

)
, (0.39)

p2,ε ∈ Lσ0
(
(0,T ); Lσ0(G ′)

)
,

p3,ε ∈ L2
(
(0,T ); L2(G ′)

)
and

ph,ε ∈ Cw

(
[0,T ];W 1,2(G ′)

)
with ∆ph,ε = 0, and ph,ε(0) = 0 and
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−
∫ T

0

∫
G ′
(vε − v) · ∂tϕ dx dt +

∫ T

0

∫
G ′

(
S(cε,Dvε)− S̃

)
: ∇ϕ dx dt

=

∫ T

0

∫
G ′

(vε ⊗ vεΦε(|vε|)− v ⊗ v) : ∇ϕ dx dt

+

∫ T

0

∫
G ′
(Kε −K) : ∇ϕ dx dt

+

∫ T

0

∫
G ′

{(p1,ε + p2,ε + p3,ε) divϕ+∇ph,m · ∂tϕ} dx dt

(0.40)

for all ϕ ∈ (C∞
0 (G ′ × (0,T ))d .
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‖p1,ε‖Lq′ (G ′×(0,T )) ≤ C‖S(cε,Dvε)− S̃‖Lq′ (G ′×(0,T )), (0.41)

‖p2,ε‖Lσ0 (G ′×(0,T )) ≤ C‖vε ⊗ vεΦε(|vε|)− v ⊗ v‖Lσ0 (G ′×(0,T )),

(0.42)

‖p3,ε‖L2(G ′×(0,T )) ≤ C‖Kε −K‖L2(QT ) and (0.43)

‖ph,ε(t)‖W 1,2(G ′) ≤ C‖vε(t)− v(t)‖L2(G ′), t ∈ (0,T ). (0.44)
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Since ph,ε is harmonic in G ′, as in Diening-Ruzicka-Wolf, it follows
that for all t ∈ (0,T ) and all 1 ≤ r ≤ ∞,

‖ph,ε(t)‖W 2,r (G) ≤ C‖ph,ε(t)‖L2(G ′)

≤ C‖vε(t)− v(t)‖L2(G ′) (0.45)

where the constant depends on d , G ′ and G .
If we set uε := (vε − v +∇ph,ε)χG×(0,T ), we have

uε → 0 strongly in L2σ0(G × (0,T )) ε→ 0.
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We can also see that (0.40) can be rewritten for any
ϕ ∈ (C∞

0 (G × (0,T ))d as follows.

−
∫ T

0

∫
G
uε · ∂tϕ d(x , t) +

∫ T

0

∫
G

(
S(cε,Dvε)− S̃

)
: Dϕ d(x , t)

=

∫ T

0

∫
G
(vε ⊗ vεΨε(|vε|)− v ⊗ v) : ∇ϕ dx dt

+

∫
QT

(Kε −K) : Dϕ d(x , t)

+

∫ T

0

∫
G
(p1,ε + p2,ε + p3,ε) divϕ d(x , t) (0.46)
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From this, we get ∂tuε ∈ Lσ0(0,T ;W−1,σ0(G ))). Therefore, if we
put

H1,ε = S̃− S(cε,Duε) + p1,εI,

H2,ε = vε ⊗ vεΨε(|vε|)− v ⊗ v + p2,εI,

H3,ε = Kε −K+ p3,εI,

and Hε = H1,ε +H2,ε +H3,ε,

then (0.46) can be written both as

−
∫
G×(0,T )

uε · ∂tϕ d(x , t) =

∫
G×(0,T )

Hε : ∇ϕ d(x , t) (0.47)

for all ϕ ∈ (C∞
0 (G × (0,T )))d and as∫ T

0
〈∂tuε,ϕ〉 dt =

∫
G×(0,T )

Hε : ∇ϕ d(x , t) (0.48)

for all ϕ ∈
(
Lσ

′
0

(
0,T ;W

1,σ′
0

0 (G )
))d

.
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We define the set Ek,ε and αk,ε where k ∈ N appropriately by using
uε and H1,ε, H2,ε, H3,ε. Then we can use Lipschitz truncation
lemma by setting u = uε, H = Hε, E = Ek,ε and α = αk,ε.
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We choose k ∈ N appropriately for each ε and setting it to be εk .
Letting k → ∞ in the equality which is obtained by Lipschitz
truncation lemma we get

lim
k→∞

∫
G×(0,T )

S(c ,Dvεk ) : Dvεk ζd(x , t) =

∫
G×(0,T )

S̃ : Dvζd(x , t).

(0.49)

With the help of the local Minty trick we obtain

S̃ζ = S(c,Dv)ζ a.e. in G × (0,T ). (0.50)

Hence

S̃ = S(c,Dv) a.e. in G × (0,T ).
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