On a Diffuse Interface Model for Non-Newtonian Two-Phase Flows with Matched Densities

Yutaka Terasawa

The University of Tokyo, JSPS Research Fellow

30 November, 2012
Seoul-Tokyo Conference, KIAS
Joint work with Helmut Abels (Regensburg) and Lars Diening (Munich)

Diffuse Interface Model for two-phase flows

We consider

$$
\begin{align*}
\rho \partial_{t} \mathbf{v}+\rho \mathbf{v} \cdot \nabla \mathbf{v}-\operatorname{div} \mathbf{S}(c, \mathbf{D v})+\nabla p & =-\delta \operatorname{div}(\nabla c \otimes \nabla c)+f \tag{0.1}\\
\operatorname{div} \mathbf{v} & =0, \tag{0.2}\\
\partial_{t} c+\mathbf{v} \cdot \nabla c & =m \Delta \mu, \tag{0.3}\\
\mu & =\delta^{-1} \phi(c)-\delta \Delta c . \tag{0.4}
\end{align*}
$$

Here \mathbf{v} is the mean velocity, $\mathbf{D} \mathbf{v}=\frac{1}{2}\left(\nabla \mathbf{v}+\nabla \mathbf{v}^{\top}\right), p$ is the pressure, and c is an order parameter related to the concentration of the fluids (e.g. the concentration difference or the concentration of one component). For simplicity we assume that $\delta=\rho=1$.

Diffuse Interface Model for two-phase flows

We close the system by adding the boundary and initial conditions

$$
\begin{align*}
\left.\mathbf{v}\right|_{\partial \Omega} & =0 & & \text { on } \partial \Omega \times(0, \infty), \tag{0.5}\\
\left.\partial_{n} c\right|_{\partial \Omega}=\left.\partial_{n} \mu\right|_{\partial \Omega} & =0 & & \text { on } \partial \Omega \times(0, \infty), \tag{0.6}\\
\left.(\mathbf{v}, c)\right|_{t=0} & =\left(\mathbf{v}_{0}, c_{0}\right) & & \text { in } \Omega . \tag{0.7}
\end{align*}
$$

Basic Assumption

Let $\Omega \subset \mathbb{R}^{d}, d=2,3$, be a bounded domain with C^{2}-boundary and let $\Phi \in C([a, b]) \cap C^{2}((a, b))$ be such that $\phi=\Phi^{\prime}$ satisfies

$$
\lim _{s \rightarrow a} \phi(s)=-\infty, \quad \lim _{s \rightarrow b} \phi(s)=\infty, \quad \phi^{\prime}(s) \geq-\alpha
$$

for some $\alpha \in \mathbb{R}$. Let $m>0$ and let $S:[a, b] \times \mathbb{R}^{d \times d} \rightarrow \mathbb{R}^{d \times d}$ be such that

$$
\begin{aligned}
|\mathbf{S}(c, M)| & \leq C\left(|\operatorname{sym}(M)|^{q-1}+1\right) \\
\left|\mathbf{S}\left(c_{1}, M\right)-\mathbf{S}\left(c_{2}, M\right)\right| & \leq C\left|c_{1}-c_{2}\right|\left(|\operatorname{sym}(M)|^{q-1}+1\right) \\
\mathbf{S}(c, M): M & \geq \kappa|\operatorname{sym}(M)|^{q}-C_{1}
\end{aligned}
$$

for all $M \in \mathbb{R}^{d \times d}, c, c_{1}, c_{2} \in[a, b]$, and some $C, C_{1}, \kappa>0$, $q \in\left(\frac{6}{5}, \infty\right)$.Moreover, we assume that $S(c, \cdot): \mathbb{R}_{\text {sym }}^{d \times d} \rightarrow \mathbb{R}_{\text {sym }}^{d \times d}$ is strictly monotone for every $c \in[a, b]$.

$$
\left(\mathbf{S}\left(c, M_{1}\right)-\mathbf{S}\left(c, M_{2}\right)\right):\left(M_{1}-M_{2}\right)>0
$$

for any $M_{1}, M_{2} \in \mathbb{R}_{\text {sym }}^{d \times d}\left(M_{1} \neq M_{2}\right)$.
For the following we denote

$$
\begin{aligned}
& \qquad E_{\text {mix }}(c)=\int_{\Omega} \frac{|\nabla c|^{2}}{2} d x+\int_{\Omega} \Phi(c) d x \\
& \text { Let } V_{p}(\Omega)=W_{p, 0}^{1}(\Omega)^{d} \cap L_{\sigma}^{p}(\Omega) \\
& L_{(0)}^{2}(\Omega)=\left\{f \in L^{2}(\Omega): \int_{\Omega} f(x) d x=0\right\} \\
& H_{(0)}^{1}(\Omega)=H^{1}(\Omega) \cap L_{(0)}^{2}(\Omega) \text {, and } H_{(0)}^{-1}(\Omega):=H_{(0)}^{1}(\Omega)^{\prime} \\
& \qquad Q_{t}:=\Omega \times(0, t) \\
& Q:=\Omega \times(0, \infty)
\end{aligned}
$$

Cahn-Hilliard equation

We recall some results on the Cahn-Hilliard equation with convection term:

$$
\begin{align*}
\partial_{t} c+\mathbf{v} \cdot \nabla c & =m \Delta \mu & & \text { in } \Omega \times(0, \infty), \tag{0.8}\\
\mu & =\phi(c)-\Delta c & & \text { in } \Omega \times(0, \infty), \tag{0.9}\\
\left.\partial_{n} c\right|_{\partial \Omega}=\left.\partial_{n} \mu\right|_{\partial \Omega} & =0 & & \text { on } \partial \Omega \times(0, \infty), \tag{0.10}\\
\left.c\right|_{t=0} & =c_{0} & & \text { in } \Omega \tag{0.11}
\end{align*}
$$

for given c_{0} with $E_{\text {mix }}\left(c_{0}\right)<\infty$ and $\mathbf{v} \in L^{\infty}\left(0, \infty ; L_{\sigma}^{2}(\Omega)\right) \cap L^{2}\left(0, \infty ; H_{0}^{1}(\Omega)^{d}\right)$. Here $\phi=\Phi^{\prime}$ and Φ is as in Basic Assumption.

Theorem 1 (Abels and Wilke ('06)) Let

$\mathbf{v} \in L^{2}\left(0, \infty ; H_{0}^{1}(\Omega)^{d}\right) \cap L^{\infty}\left(0, \infty ; L_{\sigma}^{2}(\Omega)\right)$. Then for every $c_{0} \in H_{(0)}^{1}(\Omega)$ with $E_{\text {mix }}\left(c_{0}\right)<\infty$ there is a unique solution $c \in B C\left([0, \infty) ; H_{(0)}^{1}(\Omega)\right)$ of (0.8)-(0.11) with
$\partial_{t} c \in L^{2}\left(0, \infty ; H_{(0)}^{-1}(\Omega)\right)$ and $\mu \in L_{\text {uloc }}^{2}\left([0, \infty) ; H^{1}(\Omega)\right)$. This solution satisfies

$$
\begin{equation*}
E_{m i x}(c(t))+\int_{Q_{t}}|\nabla \mu|^{2} d(x, \tau)=E_{m i x}\left(c_{0}\right)-\int_{Q_{t}} \mathbf{v} \cdot \mu \nabla c d(x, \tau) \tag{0.12}
\end{equation*}
$$

for all $t \in[0, \infty)$ and

$$
\begin{align*}
& \|c\|_{L^{\infty}\left(0, \infty ; H^{1}\right)}^{2}+\left\|\partial_{t} c\right\|_{L^{2}\left(0, \infty ; H_{(0)}^{-1}\right)}^{2}+\|\nabla \mu\|_{L^{2}(Q)}^{2} \\
& \quad \leq \quad C\left(E_{\text {mix }}\left(c_{0}\right)+\|\mathbf{v}\|_{L^{2}(Q)}^{2}\right) \tag{0.13}\\
& \|c\|_{L_{\text {uloc }}^{2}\left([0, \infty) ; W_{r}^{2}\right)}^{2}+\|\phi(c)\|_{L_{\text {uloc }}^{2}\left([0, \infty) ; L^{r}\right)}^{2}(0.1 \\
& \quad \leq C_{r}\left(E_{\text {mix }}\left(c_{0}\right)+\|\mathbf{v}\|_{L^{2}(Q)}^{2}\right) \tag{0.14}
\end{align*}
$$

where $r=6$ if $d=3$ and $1<r<\infty$ is arbitrary if $d=2$.

Moreover, for every $R>0$ the solution

$$
c \in Y:=L_{\text {loc }}^{2}\left([0, \infty) ; W_{r}^{2}(\Omega)\right) \cap H_{\text {loc }}^{1}\left([0, \infty) ; H_{(0)}^{-1}(\Omega)\right)
$$

depends continuously on
$\left(c_{0}, v\right) \in X:=H^{1}(\Omega) \times L_{\text {loc }}^{2}\left([0, \infty) ; L_{\sigma}^{2}(\Omega)\right)$ with $E_{\text {mix }}\left(c_{0}\right)+\|v\|_{L^{2}\left(0, \infty ; H^{1}\right)} \leq R$ with respect to the weak topology on Y and the strong topology on X.

Approximate system

$$
\begin{array}{rlrl}
\partial_{t} \mathbf{v}+\operatorname{div}\left(\Phi_{\varepsilon}(|\mathbf{v}|) \mathbf{v} \otimes \mathbf{v}\right) & -\operatorname{div} \mathbf{S}(c, \mathbf{D v})+\nabla p & & \\
& =-\Psi_{\varepsilon}(\operatorname{div}(\nabla c \otimes \nabla c)) & & \text { in } \Omega \times(0, T), \\
\operatorname{div} \mathbf{v} & =0, & & (0.15) \\
\partial_{t} c+\left(\Psi_{\varepsilon} \mathbf{v}\right) \cdot \nabla c & =m \Delta \mu, & & \text { in } \Omega \times(0, T), \\
\mu & =\phi(c)-\Delta c . & & \text { in } \Omega \times(0, T), \\
(0.17)
\end{array}
$$

together with (0.5)-(0.6), where $\psi_{\varepsilon} w=\left.P_{\sigma}\left(\psi_{\varepsilon} * w\right)\right|_{\Omega}$,
$\psi_{\varepsilon}(x)=\varepsilon^{-d} \psi(x / \varepsilon), \varepsilon>0$, is a usual smoothing kernel such that $\psi(-x)=\psi(x)$ for all $x \in \mathbb{R}^{n}, w$ is extended by 0 outside of Ω, and P_{σ} is the Helmholtz projection.

Existence of weak solutions of the approximate system

Theorem 2 (Abels-Diening-T.) For every $0<T<\infty$, $v_{0} \in L_{\sigma}^{2}(\Omega), c_{0} \in H^{1}(\Omega)$ such that $c_{0}(x) \in[a, b]$ almost everywhere there is a weak solution (\mathbf{v}, c, μ) of (0.15)-(0.18),(0.5)-(0.7) such that

$$
\begin{aligned}
& \mathbf{v} \in W_{p^{\prime}}^{1}\left([0, T] ; V_{p}(\Omega)^{\prime}\right) \cap L^{p}\left(0, T ; V_{p}(\Omega)\right), \\
& c \in B C\left([0, T] ; H^{1}(\Omega)\right) \cap H^{1}\left(0, T ; H_{(0)}^{-1}(\Omega)\right) \cap L^{2}\left(0, T ; W_{r}^{2}(\Omega)\right), \\
& \mu \in L^{2}\left(0, T ; H^{1}(\Omega)\right)
\end{aligned}
$$

where $r=6$ if $d=3$ and $1 \leq r<\infty$ is arbitrary if $d=2$.

Moreover, for every $0 \leq t \leq T$

$$
\begin{align*}
& \frac{1}{2}\|\mathbf{v}(t)\|_{L^{2}(\Omega)}^{2}+E_{\text {mix }}(c(t))+\int_{0}^{t} \int_{\Omega} \mathbf{S}(c, \mathbf{D} \mathbf{v}): \mathbf{D v} d x d \tau \\
& \quad+\int_{0}^{t} \int_{\Omega} m|\nabla \mu|^{2} d x d \tau=\frac{1}{2}\left\|\mathbf{v}_{0}\right\|_{L^{2}(\Omega)}^{2}+E_{m i x}\left(c_{0}\right) \\
& \quad=: E_{0} \tag{0.19}
\end{align*}
$$

and

$$
\begin{equation*}
\|c\|_{L^{2}\left(0, T ; W_{r}^{2}(\Omega)\right)}+\|\phi(c)\|_{L^{2}\left(0, T ; L^{r}(\Omega)\right)} \leq C\left(T, E_{0}\right) \tag{0.20}
\end{equation*}
$$

for some $C\left(T, E_{0}\right)>0$ depending continuously on T, E_{0}.

Definition of Weak Solutions Let $d=2$ or $d=3$. Let
$\Omega \subset \mathbb{R}^{d}$ be a bounded open set with C^{2}-boundary and $0<T<\infty$. Assume ϕ and \mathbf{S} satisfies the Basic Assumption. Let $v_{0} \in L_{\sigma}^{2}(\Omega), c_{0} \in H^{1}(\Omega)$ s.t. $c_{0}(x) \in[a, b]$ a.e. $x \in \Omega$. Then a triplet (\mathbf{v}, c, μ) such that

$$
\begin{aligned}
& \mathbf{v} \in C_{w}\left([0, T] ; L_{\sigma}^{2}(\Omega)\right) \cap W_{p^{\prime}}^{1}\left([0, T] ; V_{p}(\Omega)^{\prime}\right) \cap L^{p}\left(0, T ; V_{p}(\Omega)\right), \\
& c \in B C\left([0, T] ; H^{1}(\Omega)\right) \cap H^{1}\left(0, T ; H_{(0)}^{-1}(\Omega)\right) \cap L^{2}\left(0, T ; W_{r}^{2}(\Omega)\right), \\
& \mu \in L^{2}\left(0, T ; H^{1}(\Omega)\right)
\end{aligned}
$$

where $r=6$ if $d=3$ and $1 \leq r<\infty$ is arbitrary if $d=2$, which satisfies the following is called a weak solution of (0.1) - (0.6).

For any $\varphi \in\left(C^{\infty}\left(Q_{T}\right)\right)^{d}$ with $\operatorname{div} \varphi=0$ and $\operatorname{supp}(\varphi) \subset \subset \Omega \times[0, T)$,

$$
\begin{align*}
& -\int_{Q_{T}} \mathbf{v} \cdot \partial_{t} \varphi d(x, t)-\int_{Q_{T}} \mathbf{v} \otimes \mathbf{v}: \mathbf{D} \varphi d(x, t)+\int_{Q_{T}} \mathbf{S}(c, \mathbf{D v}): \mathbf{D} \varphi d(x, t) \\
& =\int_{Q_{T}} \nabla c \otimes \nabla c: \mathbf{D} \varphi d(x, t)+\int_{\Omega} \mathbf{v}_{0} \cdot \varphi(0) d x \tag{0.21}
\end{align*}
$$

holds and for $\psi \in C_{(0)}^{\infty}([0, T) \times \bar{\Omega})$,

$$
\begin{aligned}
-\int_{Q_{T}} c \partial_{t} \psi d x d t-\int_{\Omega} c_{0} \psi(0) & +\int_{Q_{T}}(v \cdot \nabla c) \psi d x d t \\
& =-\int_{Q_{T}} \nabla \mu \cdot \nabla \psi d(x, t) \\
\mu & =\phi(c)-\Delta c, \\
\left.\partial_{n} c\right|_{\partial \Omega} & =0
\end{aligned}
$$

holds.

Main Theorem (Abels-Diening-T.) Let $d=2$ or $d=3$. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded open set with C^{2}-boundary and $0<T<\infty$. Assume ϕ and \mathbf{S} satisfies the Basic Assumption. Let $v_{0} \in L_{\sigma}^{2}(\Omega), c_{0} \in H^{1}(\Omega)$ s.t. $c_{0}(x) \in[a, b]$ a.e. $x \in \Omega$. Then there exists a weak solution of (0.1) - (0.6).

Sketch of proof

There is a unique weak solution of the approximate system (0.15) (0.4) together with boundary conditions. We pass that solution to the limit when ϵ tends to zero, using an adaptation of the Lipshitz truncation method, which was used for the construction of weak solutions of the power-law fluid equations with low powers in Diening-Ruzicka-Wolf ('10). Then we get a weak solution of (0.1) - (0.6).

Power-Law Fluid equations

$$
\begin{align*}
\rho \partial_{t} \mathbf{v}+\rho \mathbf{v} \cdot \nabla \mathbf{v}-\operatorname{div} \mathbf{S}(\mathbf{D} \mathbf{v})+\nabla p & =f \tag{0.22}\\
\operatorname{div} \mathbf{v} & =0 \tag{0.23}
\end{align*}
$$

where $S: \mathbb{R}^{d \times d} \rightarrow \mathbb{R}^{d \times d}$ satisfies

$$
\begin{aligned}
|\mathbf{S}(M)| & \leq C\left(|\operatorname{sym}(M)|^{q-1}+1\right) \\
\mathbf{S}(M): M & \geq \kappa|\operatorname{sym}(M)|^{q}-C_{1}
\end{aligned}
$$

for all $M \in \mathbb{R}^{d \times d}$, and some $C, C_{1}, \kappa>0, q \in[1, \infty)$.
\mathbf{S} is strictly monotone.

We review the known results about the weak solution of (0.22) (0.23) (with boundary condition).

- Ladyzhenskaya ('67, '68) and Lions ('69) proved the existence of a unique weak solution when $q \geq \frac{d+2}{2}$.
- In periodic boundary condition case, Necas, Malek and Ruzicka ('93) proved the existence of a weak solution when $q>\frac{3 d}{d+2}$.
- In Dirichlet boundary condition case, Necas, Malek and Ruzicka ('01) proved the existence of a weak solution when $2 \leq q<3$ when $d=3$.
- In Dirichlet boundary condtion case, Wolf ('07) proved the existence of a weak solution when $q>\frac{2(d+1)}{d+2}$, using L^{∞}-test functions and the local pressure method.
- In Dirichlet boundary condition case, Diening, Ruzicka and Wolf ('10) proved the existence of a weak solution when $q>\frac{2 d}{d+2}$, using Lipschitz truncation method and the local pressure method.

Remark. When $q=2$ (i.e. Navier-Stokes equations case), the existence of weak solutions can be proven in all dimensions more easily.

Results on Navier-Stokes-Cahn-Hilliard equations

- Abels('09)

Results on Power Law Fluid equations coupled with Cahn-Hilliard equations

- Kim-Consiglieri-Rodorigues('06)
- Grasselli-Prazak('11)

Our main result treats the case with low q which was not treated in the literatures, which corresponds to the result in Diening-Ruzicka-Wolf ('10).

Lipshitz truncation lemma

Lemma Let

$\mathbf{u} \in L^{\infty}\left(0, T ; L^{2}(G)\right) \cap L^{q}\left(0, T ; W^{1, q}(G)\right)(1<q<\infty)$ and $\mathbf{H} \in L^{\sigma}\left(0, T ; L^{\sigma}(G)\right)(1<\sigma<\infty)$ be such that

$$
\begin{equation*}
-\int_{G \times(0, T)} \mathbf{u} \cdot \partial_{t} \varphi d(x, t)=\int_{G \times(0, T)} \mathbf{H}: \nabla \varphi d(x, \tau) \tag{0.24}
\end{equation*}
$$

for all $\varphi \in C_{0}^{\infty}(G \times(0, T))$. We define

$$
\begin{aligned}
\mathcal{O}_{\Lambda} & :=\left\{(x, \tau) \in \mathbb{R}^{d+1} \mid \mathcal{M}^{*}(|\nabla \mathbf{u}|)(x, t)+\alpha \mathcal{M}^{*}(|\mathbf{H}|)(x, t)>\Lambda\right\}, \Lambda>0 \\
\mathcal{U}_{1} & :=\left\{(x, t) \in \mathbb{R}^{d+1} \mid \mathcal{M}^{*}(|\mathbf{u}|)(x, t)>1\right\} .
\end{aligned}
$$

Let $\Lambda>0$ and the open set $E \subset \mathbb{R}^{d+1}$ with $\mathcal{L}_{d+1}(E)<\infty$ be such that

$$
\begin{equation*}
(G \times(0, T)) \cap\left(\mathcal{O}_{\wedge} \cup \mathcal{U}_{1}\right) \subset E \subset G \times(0, T) \tag{0.25}
\end{equation*}
$$

Lipshitz truncation lemma

Let $K \subset G \times(0, T)$ be a compact set. Then we have:
(i) The Lipschitz truncation $\mathcal{T}_{E}^{\alpha} \mathbf{u}$ belongs to $C_{d_{\alpha}}^{0,1}(K)$ with a norm depending on $n, K, \Lambda, \alpha,\|\mathbf{u}\|_{L^{1}(E)},\|\mathbf{u}\|_{L^{1}(\tilde{K} \times(0, T))}$, where
$K \subset \subset \tilde{K} \subset \subset G$. In particular, we have $\mathcal{T}_{E}^{\alpha} \mathbf{u}, \nabla \mathcal{T}_{E}^{\alpha} \mathbf{u} \in L^{\infty}(K)$.
(ii) The Lipschitz truncation $\mathcal{T}_{E}^{\alpha} \mathbf{u}$ satisfies the estimates

$$
\begin{align*}
\left\|\nabla \mathcal{T}_{E}^{\alpha} \mathbf{u}\right\|_{L^{\infty}(K)} & \leq c\left(\Lambda+\alpha^{-1} \delta_{\alpha, K}^{-d-3}\|\mathbf{v}\|_{L^{1}(E)}\right) \tag{0.26}\\
\left\|\mathcal{T}_{E}^{\alpha} \mathbf{v}\right\|_{L^{\infty}(K)} & \leq c\left(1+\alpha^{-1} \delta_{\alpha, K}^{-d-2}\|\mathbf{u}\|_{L^{1}(E)}\right) \tag{0.27}
\end{align*}
$$

where $\delta_{\alpha, K}:=d_{\alpha}(K, \partial(G \times(0, T)))$ and where the constants c depend only on n. Here $\alpha>0$ and
$d_{\alpha}((x, s),(y, t)):=\max \left\{|x-y|,\left|\alpha^{-1}(s-t)\right|^{\frac{1}{2}}\right\}$.

Lipschitz truncation lemma (continued)

(iii) The function $\left(\partial_{t} \mathcal{T}_{E}^{\alpha} \mathbf{v}\right) \cdot\left(\mathcal{T}_{E}^{\alpha} \mathbf{u}-\mathbf{u}\right)$ belongs to $L^{1}(K \cap E)$ and we have

$$
\begin{equation*}
\left\|\left(\partial_{t} \mathcal{T}_{E}^{\alpha} \mathbf{v}\right) \cdot\left(\mathcal{T}_{E}^{\alpha} \mathbf{u}-\mathbf{u}\right)\right\|_{L^{1}(K \cap E)} \leq c \alpha^{-1} \mathcal{L}_{d+1}(E)\left(\Lambda+\alpha^{-1} \delta_{\alpha, K}^{-d-3}\|\mathbf{u}\|_{L^{1}(E)}\right)^{2}, \tag{0.28}
\end{equation*}
$$

where the constant c depends only on n.
(iv) For all $\zeta \in C_{0}^{\infty}(G \times(0, T))$ holds the identity

$$
\begin{align*}
& \int_{0}^{T}\left\langle\partial_{t} \mathbf{u}(t),\left(\mathcal{T}_{E}^{\alpha} \mathbf{u}(t)\right) \zeta(t)\right\rangle d t \tag{0.29}\\
& =\frac{1}{2} \int_{G \times(0, T)}\left(\left|\mathcal{T}_{E}^{\alpha} \mathbf{u}\right|^{2}-2 \mathbf{u} \cdot \mathcal{T}_{E}^{\alpha} \mathbf{u}\right) \partial_{t} \zeta d(x, t) \tag{0.30}\\
& +\int_{E}\left(\partial_{t} \mathcal{T}_{E}^{\alpha} \mathbf{u}\right) \cdot\left(\mathcal{T}_{E}^{\alpha} \mathbf{u}-\mathbf{u}\right) \zeta d(x, t)
\end{align*}
$$

where $\langle\cdot, \cdot\rangle$ denotes the usual duality pairing with respect to G.

The existence of weak solutions of the approximate system follows from Theorem 2. Using the a priori estimates given by (0.19) and (0.20), we can conclude for a suitable subsequence $\varepsilon_{i} \rightarrow_{i \rightarrow \infty} 0$ that

$$
\begin{align*}
\mathbf{D} \mathbf{v}_{\varepsilon_{i}} & \rightarrow \mathbf{D v} \text { weakly in } L^{q}\left(Q_{T}\right), \\
\mathbf{v}_{\varepsilon_{i}} & \rightarrow \mathbf{v} \text { weakly in } L^{\frac{d+2}{d}}\left(Q_{T}\right), \\
\mathbf{S}\left(c_{\varepsilon_{i}}, \mathbf{D} \mathbf{v}_{\varepsilon_{i}}\right) & \rightarrow \widetilde{\mathbf{S}} \text { weakly in } L^{q^{\prime}}\left(Q_{T}\right), \\
\mathbf{v}_{\varepsilon_{i}} \otimes \mathbf{v}_{\varepsilon_{i}} \Phi_{\varepsilon_{i}}\left(\mathbf{v}_{\varepsilon_{i}}\right) & \rightarrow \widetilde{\mathbf{H}} \text { weakly in } L^{q \frac{d+2}{2 d}}\left(Q_{T}\right) . \tag{0.31}
\end{align*}
$$

Moreover, because of $(0.20),(0.17)$, and the Lemma of Aubin-Lions, it is easy to prove that

$$
\nabla c_{\varepsilon_{i}} \rightarrow_{i \rightarrow \infty} \nabla c \quad \text { in } L^{2}\left(0, T ; C^{1}(\bar{\Omega})\right)
$$

since $W_{6}^{2}(\Omega) \hookrightarrow C^{1}(\bar{\Omega})$ compactly. Interpolation with the boundedness of $c_{\varepsilon} \in L^{\infty}\left(0, T ; H^{1}(\Omega)\right)$ yields

$$
\begin{equation*}
\nabla c_{\varepsilon_{i}} \rightarrow_{i \rightarrow \infty} \nabla c \quad \text { in } L^{4}\left(Q_{T}\right) \tag{0.32}
\end{equation*}
$$

Let $\mathbf{K}_{\varepsilon} \in L^{2}\left(Q_{T}\right)^{d \times d}$ be such that

$$
\begin{array}{r}
\int_{Q_{T}} \mathbf{K}_{\varepsilon}: \mathbf{D} \varphi d(x, \tau)=\int_{Q_{T}}\left(\nabla c_{\varepsilon} \otimes \nabla c_{\varepsilon}\right): \mathbf{D} \Psi_{\varepsilon}(\varphi) d(x, \tau) \\
=-\int_{Q_{T}} \Psi_{\varepsilon}\left(\operatorname{div}\left(\nabla c_{\varepsilon} \otimes \nabla c_{\varepsilon}\right)\right) \cdot \varphi d(x, \tau)
\end{array}
$$

for all $\varphi \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)^{d}\right)$ and that $\mathbf{K}_{\varepsilon} \in L^{2}\left(Q_{T}\right)^{d}$ depends continuously on $\Psi_{\varepsilon} \operatorname{div}\left(\nabla c_{\varepsilon} \otimes \nabla c_{\varepsilon}\right) \in L^{2}\left(0, T ; H_{0}^{-1}(\Omega)^{d}\right)$. Then

$$
\mathbf{K}_{\varepsilon_{i}} \rightarrow \mathbf{K}:=\nabla c \otimes \nabla c \text { strongly in } L^{2}\left(Q_{T}\right)^{d \times d}
$$

due to (0.32).

We consider only the case $q<2$ for simplicity. Next, let $G \subset \subset \Omega$ be a fixed but arbitrary open bounded set. Clearly we may assume there exists an open bounded set $G^{\prime} \subset \subset \Omega$ with $G \subset \subset G^{\prime}$ and $\partial G^{\prime} \in C^{2}$. Similarly as in Diening-Ruzicka-Wolf, we have for some $\varepsilon_{i} \rightarrow_{i \rightarrow \infty} 0$,

$$
\mathbf{v}_{\varepsilon_{i}} \rightarrow \mathbf{v} \quad \text { strongly in } L^{2 \sigma_{0}}\left(0, T ; L^{2 \sigma_{0}}\left(G^{\prime}\right)\right)
$$

and $\mathbf{v}_{\varepsilon_{i}} \otimes \mathbf{v}_{\varepsilon_{i}} \Phi_{\varepsilon_{i}}\left(\left|\mathbf{v}_{\varepsilon}\right|\right) \rightarrow \mathbf{v} \otimes \mathbf{v} \quad$ strongly in $L^{\sigma_{0}}\left(0, T ; L^{\sigma_{0}}\left(G^{\prime}\right)\right)$,
(0.35)
where $\sigma_{0}>1$ and $q \leq 2 \sigma_{0}<q \frac{d+2}{d}$. We also have for $i \rightarrow \infty$,

$$
\begin{equation*}
\mathbf{v}_{\varepsilon_{i}} \rightarrow \mathbf{v} \quad \text { strongly in } L^{r}\left(0, T ; L^{2}\left(G^{\prime}\right)\right), \text { for all } 1 \leq r<\infty \tag{0.36}
\end{equation*}
$$

by interpolation of (0.34) with the boundedness of
$\left(\mathbf{v}_{\varepsilon}\right) \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$.

Taking the limit of the weak form of the approximate system along the subsequence ε_{i}, we have the following.

$$
\begin{align*}
&-\int_{Q_{T}} \mathbf{v} \cdot \partial_{\tau} \varphi d(x, t)+\int_{Q_{T}}(\widetilde{\mathbf{S}}-\mathbf{v} \otimes \mathbf{v}): \mathbf{D} \varphi d(x, t) \tag{0.37}\\
&=\int_{Q_{T}} \mathbf{K}: \mathbf{D} \varphi d(x, t)+\int_{\Omega} \mathbf{v}_{0} \cdot \varphi(0) d x
\end{align*}
$$

By subtracting the above equation from the weak form of the approximate equations, we have the following.

$$
\begin{align*}
-\int_{Q_{T}}\left(\mathbf{v}_{\varepsilon}-\mathbf{v}\right) & \cdot \partial_{t} \varphi d(x, t)+\int_{Q_{T}}\left(\mathbf{S}\left(c_{\varepsilon}, \mathbf{D} u_{\varepsilon}\right)-\widetilde{\mathbf{S}}\right): \mathbf{D} \varphi d(x, t) \\
& =\int_{Q_{T}}\left(\mathbf{v}_{\varepsilon} \otimes \mathbf{v}_{\varepsilon} \Phi_{\varepsilon}\left(\mathbf{v}_{\varepsilon}\right)-\mathbf{v} \otimes \mathbf{v}\right): \mathbf{D} \varphi d(x, t) \\
& +\int_{Q_{T}}\left(\mathbf{K}_{\varepsilon}-\mathbf{K}\right): \mathbf{D} \varphi d(x, t) \tag{0.38}
\end{align*}
$$

Using a local pressure decomposition method as in Diening-Ruzicka-Wolf, one gets unique functions:

$$
\begin{align*}
& p_{1, \varepsilon} \in L^{q^{\prime}}\left((0, T) ; L^{q^{\prime}}\left(G^{\prime}\right)\right), \tag{0.39}\\
& p_{2, \varepsilon} \in L^{\sigma_{0}}\left((0, T) ; L^{\sigma_{0}}\left(G^{\prime}\right)\right), \\
& p_{3, \varepsilon} \in L^{2}\left((0, T) ; L^{2}\left(G^{\prime}\right)\right) \text { and } \\
& p_{h, \varepsilon} \in C_{w}\left([0, T] ; W^{1,2}\left(G^{\prime}\right)\right)
\end{align*}
$$

with $\Delta p_{h, \varepsilon}=0$, and $p_{h, \varepsilon}(0)=0$ and

$$
\begin{align*}
- & \int_{0}^{T} \int_{G^{\prime}}\left(\mathbf{v}_{\varepsilon}-\mathbf{v}\right) \cdot \partial_{t} \varphi d x d t+\int_{0}^{T} \int_{G^{\prime}}\left(\mathbf{S}\left(c_{\varepsilon}, \mathbf{D} v_{\varepsilon}\right)-\widetilde{\mathbf{S}}\right): \nabla \varphi d x d t \\
& =\int_{0}^{T} \int_{G^{\prime}}\left(\mathbf{v}_{\varepsilon} \otimes \mathbf{v}_{\varepsilon} \Phi_{\varepsilon}\left(\left|\mathbf{v}_{\varepsilon}\right|\right)-\mathbf{v} \otimes \mathbf{v}\right): \nabla \varphi d x d t \\
& +\int_{0}^{T} \int_{G^{\prime}}\left(\mathbf{K}_{\varepsilon}-\mathbf{K}\right): \nabla \varphi d x d t \\
& +\int_{0}^{T} \int_{G^{\prime}}\left\{\left(p_{1, \varepsilon}+p_{2, \varepsilon}+p_{3, \varepsilon}\right) \operatorname{div} \varphi+\nabla p_{h, m} \cdot \partial_{t} \boldsymbol{\varphi}\right\} d x d t \tag{0.40}
\end{align*}
$$

for all $\varphi \in\left(C_{0}^{\infty}\left(G^{\prime} \times(0, T)\right)^{d}\right.$.

$$
\begin{align*}
&\left\|p_{1, \varepsilon}\right\|_{L^{\prime}\left(G^{\prime} \times(0, T)\right)} \leq C\left\|\mathbf{S}\left(c_{\varepsilon}, \mathbf{D} \mathbf{v}_{\varepsilon}\right)-\widetilde{\mathbf{S}}\right\|_{L^{\prime}\left(G^{\prime} \times(0, T)\right)}, \tag{0.41}\\
&\left\|p_{2, \varepsilon}\right\|_{L^{\sigma_{0}}\left(G^{\prime} \times(0, T)\right)} \leq C\left\|\mathbf{v}_{\varepsilon} \otimes \mathbf{v}_{\varepsilon} \Phi_{\varepsilon}\left(\left|\mathbf{v}_{\varepsilon}\right|\right)-\mathbf{v} \otimes \mathbf{v}\right\|_{L^{\sigma_{0}}\left(G^{\prime} \times(0, T)\right)} \tag{0.42}\\
&\left\|p_{3, \varepsilon}\right\|_{L^{2}\left(G^{\prime} \times(0, T)\right)} \leq C\left\|\mathbf{K}_{\varepsilon}-\mathbf{K}\right\|_{L^{2}\left(Q_{T}\right)} \text { and } \\
&\left\|p_{h, \varepsilon}(t)\right\|_{W^{1,2}\left(G^{\prime}\right)} \leq C\left\|\mathbf{v}_{\varepsilon}(t)-\mathbf{v}(t)\right\|_{L^{2}\left(G^{\prime}\right)}, \quad t \in(0, T)
\end{align*}
$$

Since $p_{h, \varepsilon}$ is harmonic in G^{\prime}, as in Diening-Ruzicka-Wolf, it follows that for all $t \in(0, T)$ and all $1 \leq r \leq \infty$,

$$
\begin{align*}
\left\|p_{h, \varepsilon}(t)\right\|_{W^{2, r}(G)} & \leq C\left\|p_{h, \varepsilon}(t)\right\|_{L^{2}\left(G^{\prime}\right)} \\
& \leq C\left\|\mathbf{v}_{\varepsilon}(t)-\mathbf{v}(t)\right\|_{L^{2}\left(G^{\prime}\right)} \tag{0.45}
\end{align*}
$$

where the constant depends on d, G^{\prime} and G.
If we set $\mathbf{u}_{\varepsilon}:=\left(\mathbf{v}_{\varepsilon}-\mathbf{v}+\nabla p_{h, \varepsilon}\right) \chi_{G \times(0, T)}$, we have

$$
\mathbf{u}_{\varepsilon} \rightarrow 0 \quad \text { strongly in } L^{2 \sigma_{0}}(G \times(0, T)) \varepsilon \rightarrow 0
$$

We can also see that (0.40) can be rewritten for any $\varphi \in\left(C_{0}^{\infty}(G \times(0, T))^{d}\right.$ as follows.

$$
\begin{align*}
& -\int_{0}^{T} \int_{G} \mathbf{u}_{\varepsilon} \cdot \partial_{t} \varphi d(x, t)+\int_{0}^{T} \int_{G}\left(\mathbf{S}\left(c_{\varepsilon}, \mathbf{D} \mathbf{v}_{\varepsilon}\right)-\widetilde{\mathbf{S}}\right): \mathbf{D} \varphi d(x, t) \\
& =\int_{0}^{T} \int_{G}\left(\mathbf{v}_{\varepsilon} \otimes \mathbf{v}_{\varepsilon} \Psi_{\varepsilon}\left(\left|\mathbf{v}_{\varepsilon}\right|\right)-\mathbf{v} \otimes \mathbf{v}\right): \nabla \varphi d x d t \\
& +\int_{Q_{T}}\left(\mathbf{K}_{\varepsilon}-\mathbf{K}\right): \mathbf{D} \varphi d(x, t) \\
& +\int_{0}^{T} \int_{G}\left(p_{1, \varepsilon}+p_{2, \varepsilon}+p_{3, \varepsilon}\right) \operatorname{div} \varphi d(x, t) \tag{0.46}
\end{align*}
$$

From this, we get $\left.\partial_{t} \mathbf{u}_{\varepsilon} \in L^{\sigma_{0}}\left(0, T ; W^{-1, \sigma_{0}}(G)\right)\right)$. Therefore, if we put

$$
\begin{aligned}
& \mathbf{H}_{1, \varepsilon}=\widetilde{\mathbf{S}}-\mathbf{S}\left(c_{\varepsilon}, \mathbf{D} \mathbf{u}_{\varepsilon}\right)+p_{1, \varepsilon} \mathbf{I}, \\
& \mathbf{H}_{2, \varepsilon}=\mathbf{v}_{\varepsilon} \otimes \mathbf{v}_{\varepsilon} \Psi_{\varepsilon}\left(\left|\mathbf{v}_{\varepsilon}\right|\right)-\mathbf{v} \otimes \mathbf{v}+p_{2, \varepsilon} \mathbf{I}, \\
& \mathbf{H}_{3, \varepsilon}=\mathbf{K}_{\varepsilon}-\mathbf{K}+p_{3, \varepsilon} \mathbf{I}, \\
\text { and } & \mathbf{H}_{\varepsilon}=\mathbf{H}_{1, \varepsilon}+\mathbf{H}_{2, \varepsilon}+\mathbf{H}_{3, \varepsilon},
\end{aligned}
$$

then (0.46) can be written both as

$$
\begin{equation*}
-\int_{G \times(0, T)} \mathbf{u}_{\varepsilon} \cdot \partial_{t} \boldsymbol{\varphi} d(x, t)=\int_{G \times(0, T)} \mathbf{H}_{\varepsilon}: \nabla \boldsymbol{\varphi} d(x, t) \tag{0.47}
\end{equation*}
$$

for all $\varphi \in\left(C_{0}^{\infty}(G \times(0, T))\right)^{d}$ and as

$$
\begin{equation*}
\int_{0}^{T}\left\langle\partial_{t} \mathbf{u}_{\varepsilon}, \boldsymbol{\varphi}\right\rangle d t=\int_{G \times(0, T)} \mathbf{H}_{\varepsilon}: \nabla \boldsymbol{\varphi} d(x, t) \tag{0.48}
\end{equation*}
$$

for all $\varphi \in\left(L^{\sigma_{0}^{\prime}}\left(0, T ; W_{0}^{1, \sigma_{0}^{\prime}}(G)\right)\right)^{d}$.

We define the set $E_{k, \epsilon}$ and $\alpha_{k, \epsilon}$ where $k \in \mathbb{N}$ appropriately by using \mathbf{u}_{ϵ} and $\mathbf{H}_{1, \varepsilon}, \mathbf{H}_{2, \varepsilon}, \mathbf{H}_{3, \varepsilon}$. Then we can use Lipschitz truncation lemma by setting $\mathbf{u}=\mathbf{u}_{\varepsilon}, \mathbf{H}=\mathbf{H}_{\varepsilon}, E=E_{k, \varepsilon}$ and $\alpha=\alpha_{k, \varepsilon}$.

We choose $k \in \mathbb{N}$ appropriately for each ε and setting it to be ε_{k}. Letting $k \rightarrow \infty$ in the equality which is obtained by Lipschitz truncation lemma we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{G \times(0, T)} \mathbf{S}\left(c, \mathbf{D} \mathbf{v}_{\epsilon_{k}}\right): \mathbf{D} \mathbf{v}_{\epsilon_{k}} \zeta d(x, t)=\int_{G \times(0, T)} \widetilde{\mathbf{S}}: \mathbf{D v} \zeta d(x, t) \tag{0.49}
\end{equation*}
$$

With the help of the local Minty trick we obtain

$$
\begin{equation*}
\widetilde{\mathbf{S}} \zeta=\mathbf{S}(c, \mathbf{D v}) \zeta \text { a.e. in } G \times(0, T) \tag{0.50}
\end{equation*}
$$

Hence

$$
\widetilde{\mathbf{S}}=\mathbf{S}(c, \mathbf{D v}) \text { a.e. in } G \times(0, T)
$$

